\qquad

STRATEGIES

- Show uniqueness : let x_{1}, x_{2} both be the _, and show $x_{1}=x_{2}$.
- Show inverse: manipulate equation to get e
- Show $O(x y) \mid O(x) O(y)$: show $x y^{O(x) O(y)}=e$
- Find order of element (x, y, z) in $\mathbb{Z}_{a} \times \mathbb{Z}_{b} \times \mathbb{Z}_{c}: O((x, y, z))=\operatorname{lcm}(O(x), o(y), o(z))$ where $\alpha(x)=a$
- Prove set equality: show $A \subseteq B$ and $B \subseteq A$
\rightarrow let $x \in A$.
show $x \in B$. Thus, $B \leq A$
- Prove iff: \Rightarrow and \Leftarrow direction
- Prove subgroup: 1) nonempty

2) closed under
3) closed under inverses

- Find subgroups of $\left(\mathbb{Z}_{n},+\right) \rightarrow$ divisors of $n \rightarrow\langle 1\rangle$

$$
\left\rangle \backslash_{\langle 0\rangle^{\prime}}\langle \rangle\right.
$$

Section 0: Sets + Induction

- In 0.1

Let S, T be sets. $S \subseteq T$ iff $S \cap T=S$.

Section 1: Binary Operations

- symmetric difference of A and $B(A \Delta B)$: the set of elements that belong to either A or B, but not both; $A \Delta B=(A-B) \cup(B-A)$ or $(A \cup B)-(A \cap B)$
- $A \Delta A=\varnothing$
- $A \Delta \varnothing=A$

Section 2: Groups

```
                                    bin op
    - group: (1) \(G\) is a set, and \(*\) is a binary operation on \(G\).
        (2) \(*\) is associative [ie, \(a *(b * c)=(a * b) * c\) ]
        (3) \(\exists e \in G\) s.t. \(\forall g \in G, g e=e g=g \rightarrow\) identity element
        (4) \(\forall g \in G, \exists g^{-1} \in G\), s.t. \(g g^{-1}=g^{-1} g=e \rightarrow\) inverse
        Then, ( \(G, *\) ) is a group.
```

- abelian group: if the group is commutative (ie, $a b=b a$)

Section 3: Thus

- The 3.1

If G is a group, then e is unique.

- Thy 3.2

If G is a group and $g \in G$, then g has a unique inverse

- The 3.3

If G is a group and $g \in G$, then $\left(g^{-1}\right)^{-1}=g$

- Tho 3.4

If G is a group and $x, y \in G$, then $(x y)^{-1}=y^{-1} * x^{-1}$

- The 3.5

Let G be a group and $x, y \in G$. Suppose that either $x y=e$ or $y x=e$. Then, $y=x^{-1}$

- The 3.6

Let G be a group, and $x, y, z \in G$. Then,
left cancellation: if $x y=x z, y=z$
right cancellation: if $y x=z x, y=z$

Section 4: Powers of an Element

- $x^{0}=e$
- $x^{n}=\underbrace{(x)(x) \cdots(x)}_{n \text { times }}$ for $n \in \mathbb{Z}^{+}$
- $x^{-n}=\left(x^{-1}\right)\left(x^{-1}\right) \cdots\left(x^{-1}\right)$ for $n \in \mathbb{Z}^{+}$
$=\left(x^{-1}\right)^{n}$
- Tho 4.1

Let G be a group, and $x \in G$. Let $m, n \in \mathbb{Z}$. Then

$$
\begin{aligned}
& \text { 1. } x^{m} \cdot x^{n}=x^{m+n} \\
& \text { 2. }\left(x^{n}\right)^{-1}=x^{-n} \\
& \text { 3. }\left(x^{m}\right)^{n}=x^{m n}
\end{aligned}
$$

- If G is a group and $x \in G$, then x is of finite order if \exists a positive integer n s.t. $x^{n}=e$ If such an integer exists, then the smallest such integer is the order of $x \rightarrow O(x)=n$.
- If x is not of finite order. then x is of infinite order $\rightarrow 0(x)=\infty$
- If $O(x)=1, x=e$.
- Cor 4.6: If $G=\langle x\rangle,|G|=O(x)$
- $\operatorname{gcd}(m, n)$: greatest common divisor

- Euclidean Algo

Ex. Compute (1071, 462)

$$
\begin{aligned}
& \text { (1) } 1071=2.462+147 \\
& \text { (2) } 462=3.147+21 \\
& \text { (3) } 147=7.21+0 \\
& (m, n)=21
\end{aligned}
$$

- The 4.2

If $m, n \in \mathbb{Z}$, not both 0 , there \exists ins x, y st. $m x+n y=\operatorname{gcd}(m, n)$

- Inn 4.3

If $r, s, t \in \mathbb{Z}, r \mid$ st and $\operatorname{gcd}(r, s)=1$. Then, $r \mid t$. \rightarrow relatively prime

PROBLEM: FIX $n \in \mathbb{Z}^{+}, m \in \mathbb{Z}_{n}$.
Then, $O(m)=\frac{n}{\operatorname{ged}(m, n)}$
Tho 4.4
Let G be a group and $x \in G$. Then.
(1) $O(x)=O\left(x^{-1}\right)$
(2) If $O(x)=n$ and $x^{m}=e$, then $n \mid m$.
(3) If $O(x)=n$ and $(m, n)=d$, then $O\left(x^{m}\right)=\frac{n}{d}$

- a group is cyclic if \exists an element $x \in G$ s.t. $G=\left\{x^{n} \mid n \in \mathbb{Z}\right\}=\langle x\rangle$ \rightarrow generator
- For any $x, y \in \mathbb{Z}, x \equiv y(\bmod n)$ if x and y have same remainder $\bmod n$ \rightarrow congruent
- The 4.5

Let $G=\langle x\rangle$. If $O(x)=\infty$, then $x^{i}=x^{j}$ iff $i=j$.
If $O(x)=n$, then $x^{i}=x^{j}$ iff $i=j(\bmod n)$

- the order of group G is the number of elements $\epsilon G=|G|$
- Tho 4.7

Every cyclic group is abelian.
cor 4.6: if $G=\langle x\rangle,|6|=O(x)$

Section 5: Subgroups

- a subset H of a group G is called a subgroup of G if H is a group wry G
- The 5.1

Let H be a nonempty subset of G. Then, H is a subgroup of G if:
(1) $\forall a, b \in H, a b \in H$
closed under multiplication
(2) $\forall a \in H, a^{-1} \in H$ closed under inverse

- FACT: If G is a group and $g \in G$, then $\langle g\rangle=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$ is a subgroup of G
- The 5.2

Let G be a cyclic group. Then, every subgroup of G is cyclic.

- if G is a group, then the center of G is $Z(G)=\{g \in G \mid \forall x \in G, g x=x g\}$
elements $\in G$ that commute $\omega /$ everything
- G is abelian iff $Z(G)=G$.
- $Z(G)$ always has $e, \neq 0$
- The

Let G be a group. Then, $Z(G)$ is a sg of G.

- The 5.3

Let G be a group, H be a finite, nonempty subset. Then if H is closed under $*, H$ is a sg of G.

- The 5.4

Let H and k be sags of group G. Then:
(1) $H \cap K$ is always a sg.
(2) HUK is a sg if $H \leq K$ or $K \leq H . \rightarrow$ get back H, K

- The 5.5

$$
\text { Let } G=\langle x\rangle \text { be a cyclic group of order } n \text {. }
$$

(1) Then, $\forall m \in \mathbb{Z}^{+}, G$ has a $s g$ of order m iff m / \sim.
(2) If m / n, then G has a unique $s g$ of order m.
(3) 2 powers x^{r}, x^{s} generate the same sg of G iff $\operatorname{gcd}(n, r)=\operatorname{gcd}(n, s)$

- Cor 5.6

If $G=\langle x\rangle, O(x)=n$, and $d_{1}, d_{2}, \ldots d_{r}$ is a complete list of the divisors of n, then $\left\langle x^{d_{1}}\right\rangle,\left\langle x^{d_{2}}\right\rangle \ldots,\left\langle x^{d_{r}}\right\rangle$ is a complete list of the sss of G

- $\operatorname{Th}_{\mathrm{m}} 5.7$

Let $G=\langle x\rangle$ be an infinite cyclic group. Then, $\langle e\rangle,\langle x\rangle,\left\langle x^{2}\right\rangle,\left\langle x^{3}\right\rangle, \ldots$ are all the distinct sags of G.

Section 6: Direct Powers of Groups
Let $G \times H$ denote the set of ordered pairs (g, h) with $g \in G$ and $h \in H$.
So $G \times H=\{(g, h) \mid g \in G$ and $h \in H\}$.
Remaining step: find binary operation $\rightarrow\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)$

Since G. H are group, $G \neq \varnothing, H \neq \varnothing$. So. $G \times H \neq \varnothing$. $\left(e_{G}, e_{H}\right) \in G \times H$

```
PROVE ONTO: 1. Let }t\inT\mathrm{ .
2. Solve f(s)=t for s. }->\mathrm{ scratchwork
3. Let }s\in
4. Snow f(s)=t.
```

The 6.1
Let $G=G_{1} \times G_{2} \times \cdots \times G_{n}$
(1) If $g_{i} \in G_{i}$ for $1 \leq i \leq n$, and each g_{i} has finite order, then $O\left(\left(g_{1}, g_{2}, \ldots g_{n}\right)\right)$
$=1 \mathrm{~cm}\left(o\left(g_{1}\right), o\left(g_{2}\right), \ldots O\left(g_{n}\right)\right)$
(2) If each G_{i} is cyclic of finite order, then G is cyclic iff $\forall i \neq j, \operatorname{gcd}\left(\left|G_{i}\right|,\left|G_{j}\right|\right)=1$ size of group is relatively prime

Section 7: Functions

- Def: if S and T are sets, then a function f from S to $T, f: S \rightarrow T$, is a rule to assign to each $s \in S$ a unique $f(s)=t \in T$
domain codomain

Surjective

- f is onto if $\forall t \in T, \exists s \in S$ s.t. $f(s)=t$ - i.e, every $t \in T$ is reached

f is one-to-one if whenever $s_{1}, s_{2} \in S$, s.t. $s_{1} \neq s_{2}$, then $f\left(s_{1}\right) \neq f\left(s_{2}\right)$ - i.e, every $t \in T$ is only reached once

- image of $f: \operatorname{Im}(f)=\{f(s) \mid s \in S\} \leq T$
- f is onto when $\operatorname{Im}(f)=T$
- bijection : if $f: S \rightarrow T$ is onto and 1-1
- identity function of $f: S \rightarrow S$: given by $f(S)=S$
- $g \circ f=f \circ g$
- $\forall s \in S,(g \circ f)(s)=g(f(s))=g(s)$. Similarly, $(f \circ g)(s)=f(g(s))=f(s)$. check this!
- inverse: Assume that f is $1-1$ and onto. Then, $f^{-1}(t)=s \Leftrightarrow f(s)=t$

$$
\rightarrow \text { defined on all of } T \text {, since onto }
$$

- Let x be any nonempty set and $S_{x}=\{f: x \rightarrow x \mid f$ is 1-1, onto $\}$ \downarrow invertible

Then, ($S_{x}, 0$) is a group.
\rightarrow composition of functions

Section 8: Symmetric Groups

- Def : If x is a nonempty set and $f: x \rightarrow S$ is $1-1$ and onto, then f is a permutation
- Def: The group $\left(S_{x},{ }^{\circ}\right)$ is the symmetric group on x

- Tho (Cayley)

Every group is a subgroup of a symmetric group

Assume x is finite \rightarrow it's okay

- if $|x|=n$, we can assume that $x=\{1,2,3, \ldots, n\}$. In this case, we write S_{n} for S_{x}.
- Given a $f \in S_{n}$, we represent f by an array $\rightarrow f=\left(\begin{array}{ccccc}1 & 2 & 3 & \ldots & n \\ f(1) & f(2) & f(3) & \ldots & f(n)\end{array}\right)$ domain

$$
\text { Ex. } f=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) \in S_{4} \quad g=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{array}\right) \in S_{4}
$$

composition: $f \circ g=f(g(x))=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3\end{array}\right)$
Ex. $g=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{array}\right) \rightarrow$ just swaps 1 and $2=(1,2)$ cycle notation: $\overbrace{2}^{2}$

Ex. Let $f=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)=(1,2,3)$ "ghost arrows", not actually written down

Ex. $f \circ g=(1,2) \circ(3,4)$

Ex. Compute $(1,2,3) \circ(7,3,2) \circ(1,5)$ Assume n is the highest value.

$$
\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 7 & 3 & 4 & 2 & 6 & 1
\end{array}\right)=(1,5,2,7)
$$

- Def: Two cycles, $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{s}\right)$ are disjoint if $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \cap\left\{y_{1}, y_{2}, \ldots y_{s}\right\}=\varnothing$ \rightarrow Then, they commute.
- Tho 8.1

Let $f \in S_{n}$. Then, \exists disjoint cycles $f_{1}, f_{2}, \ldots f_{m}$ s.t. $f=f_{1} \circ f_{2} \circ \ldots \circ f_{m}$.

Thy 8.2
If $n \geq 2$, then any cycle in S_{n} can be written as the product of transpositions (2-cycles)

- Proof: $\left(x_{1}, x_{2}, \ldots, x_{r}\right)=\left(x_{1}, x_{r}\right) \circ\left(x_{1}, x_{r-1}\right) 0 \ldots \circ\left(x_{1}, x_{2}\right)$
\rightarrow textbook

$$
=\left(x_{1}, x_{2}\right) \circ\left(x_{2}, x_{3}\right) \circ \ldots \circ\left(x_{r-2}, x_{r-1}\right) \circ\left(x_{r-1}, x_{r}\right) \rightarrow \text { Prof's way }
$$

- cycles are not disjoint + not unique!
- Ex. $f=(1,3,7,9)=(1,9) \cdot(1,7) \circ(1,3) \rightarrow r-1$ transpositions to represent r-cycle

$$
=(1,3) \circ(3,7) \circ(7,9)
$$

- The 8.3

If $n \geq 2$, then any element of S_{n} can be written as a product of transpositions.

- Proof: follows from Thy $8.1+8.2$.
- Def: A permutation is even if it can be written as a product of an even \# of transpositions. \hookrightarrow odd, product of an odd \# of transpositions

Tho 8.4
No permutation is BOTH odd and even.

- Alternating Subgroup of S_{n}
- For $n \geq 2$, let $A_{n}=\left\{f \in S_{n} \mid f\right.$ is even $\}$
- The 8.5

Let $n \geq 2$, then A_{n} is a subgroup of S_{n}, s.t. $\left|S_{n}\right|=n!$ and $\left|A_{n}\right|=\frac{n!}{2}$.

- FACTS
- Let $f \in S_{n}$ be an r-cycle. Then, $o(f)=r$.
- If f and g are disjoint cycles, then $f g=g f$.
- If $f=f_{1} f_{2} \ldots f_{m}$ is a product of disjoint cycles, then $o(f)=\operatorname{lcm}\left(o\left(f_{1}\right), o\left(f_{2}\right), \ldots, o\left(f_{m}\right)\right)$.
- The identity is f, or $(a, b, c) \circ(c, b, a)$
- inverse if $f=(a b c) \rightarrow(c b a)$

$$
f=(a b)(c d) \rightarrow(d c)(b a)
$$

- P_{n}, if $n \geq 3: f=(1,2, \ldots, n)$

$$
\begin{gathered}
g=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & \cdots & n-2 & n-1 \\
1 & n & n-1 & n-2 & 4 & 3 & 2
\end{array}\right) \\
\cdot z\left(D_{n}\right)=\left\{\begin{array}{l}
\{e\} \\
\left\{e, f^{\frac{n}{2}}\right\}
\end{array} \begin{array}{c}
n=\text { odd } \\
n=\text { even }
\end{array}\right\} \rightarrow \text { for any } D_{n,} f^{n}=e, g^{2}=e, f^{i} g=g f^{-i}
\end{gathered}
$$

$>$ extend idea of equality
Section 9: Sets (Equivalence Relations + Cosets)

- Def: A relation R on set S is a set of ordered pairs of elements in S. If $S_{1}, S_{2} \in S$, and $\left(S_{1}, S_{2}\right) \in R$, then $S_{1} R S_{2}$ or $S_{1} \sim S_{2}$
related
- Def: A relation R on set S is an equivalence relation if
(1) Reflexive: $\forall s \in S, s R_{s}$.
(2) Symmetric: If $S_{1} R S_{2}$, then $S_{2} R S_{1}$. if $a=b$, then $b=a$
(3) Transitive: If $S_{1} R S_{2}$ and $S_{2} R S_{3}$, then $S_{1} R S_{3}$. if $a=b$ and $b=c$, then $a=c$
- Def: Let s be a set, and R be an ER on S. Then, for any $s \in S, \bar{s}=\{x \in S \mid x R s\}$. \bar{S} is the equivalence class of S under R.
- Tho 9.1

Let R be an ER on S. Then every element in S is in exactly 1 equivalence class under R. The equi. classes under R partition S into a family of mutually disjoint nonempty sets.

- The 9.2

For any group G and subgroup H, the relation \equiv_{H} is an equi. relation on G.

$$
x \equiv_{H} y^{\downarrow} \Leftrightarrow x y^{-1} \in H
$$

- Def: if H is a subgroup of G, then by right coset of H in G, we mean a subset of the form

$$
\text { Ha, where } a \in G \text { and } H a=\{\text { ha } \mid h \in H\}
$$

- Tho 9.3

Let H be a subgroup of G. For $a \in G$. let \bar{a} denote the equi. class of a under $\bar{\not}_{H}$ relation. Then, $\bar{a}=H a$ (right coset is equi. class).

$$
\stackrel{\downarrow}{=}\left\{g \in G \mid g \equiv_{H} a\right\}
$$

- Cor. 9.4

Let H be a sg of G, and $a, b \in G$. Then, $H a=H b \Longleftrightarrow a b^{-1} \in H \Leftarrow$ coset criterion

- Cor iff of
Notice that $H=H e=H a \Longleftrightarrow e a^{-1} \in H \Leftrightarrow a^{-1} \in H . H a=H e \Longleftrightarrow a \in H$

Section 10: Counting Elements in a Finite Group

- The 10.1 (Lagrange)

Let G be a finite group. Let H be a sg of G. Then, $|H|||G|$

-Lem 10.2

Let $H a$ and $H 6$ be right cosets of H in G. Then, there is a 1-1 correspondence btw elements of Ha and $\mathrm{Hb} . \rightarrow \mathrm{Ha}$ and Hb have the same size.

- Def: If S and T are sets and $\exists f: S \rightarrow T, f$ is $1-1$ and onto, then $|S|=|T|$ and S and T have the some cardinality

The 10.3 ρ and right
Let H be a sg of G. The number of left cosets of H in G is $[G: H]$. called the INDEX " $\frac{161}{|1|}$

- The 10.4

Let G be a finite group, and $x \in G$. Then $O(x)\left||G|\right.$. Consequently, $x^{|G|}=e \quad \forall x \in G$.

- The 10.5

Let G be a group. Suppose $|G|$ is prime. Then, G is cyclic. Moreover, any element of G, other than e, is a generator of G

- The

If G is a group s.t. $|G| \leq 5$, then G is abelian.

- Thy 10.6 (Fermal's)

Let p be a prime + suppose $a \in \mathbb{Z}$ s.t. $p \nmid a$. Then, $a^{p-1} \equiv 1 \bmod p$
Proof: $\bar{a} \in \mathbb{Z}_{p},\{0\} . O(\bar{a})\left|p-\mathbb{Z}=\left|\mathbb{Z}_{p},\{0\}\right| \Rightarrow(\bar{a})^{p-1}=1\right.$ $\Rightarrow a^{p-1} \equiv 1 \bmod p$

- Def: the eq. class \bar{a} of $a \in G$ under R is the conjugancy class of a, and consists of all the conjugates of a. Thus, $\bar{a}=\left\{x a x^{-1} \mid x \in G\right\}$

The 10.7

Let G be a group and define a relation on G by $a R b$ iff $\exists x \in G$ s.t. $a=x b x^{-1}$
Then, R is an $E R . \rightarrow$ must be reflexive, symmetric, transitive
-Lem 10.8
Let G be a finite group. Let $a \in G$. Then, the num of distinct conjugates of a, ie $|\bar{a}|$, in G is exactly the index of the centralizer in G, ie $[G: Z(a)]$.

The 10.9 (class Eq)

Let G be a finite group, and $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ consist of 1 element from each conjugency class containing at least 2 elements. Then, $|G|=|z(G)|+\left[G: z\left(a_{1}\right)\right]+\left[G: z\left(a_{2}\right)\right]+\ldots+\left[G: z\left(a_{k}\right)\right]$.

$$
\text { centralizer of } a_{1}
$$

Section 11 : Normal Subgroups

- Def: Let H be a sg of G. Then, H is a normal $s g$ in G if $\forall h \in H$ and $g \in G, g h g^{-1} \in H$. (i.e, $\mathrm{gHg}^{-1} \leq H$). Note: it does not have to be that $\mathrm{ghg}^{-1}=h$.
- The 11.1

Let H be a sg of G. Then, the following are equivalent:
(1.) H is normal in $G . \rightarrow$ show this !
$\left.\begin{array}{l}\text { (2.) } \forall g \in G, g \mathrm{Hg}^{-1}=H \\ \text { (3.) } \forall g \in G, g H=H g \text {. }\end{array}\right\}$ know this.

- The 11.2

Let G be a group. Any sg of $Z(G)$ is normal in G.

- Notation
- If H is normal in G, write $H \triangleleft G$.
- Tho 11.3

Let H be a sg of G st. $[G: H]=2$. Then, H is normal in G.

- The 11.4

Let G be a group, H a sg of G, and $g \in G$. Then, $g \mathrm{Hg}^{-1}$ is a sg of G w/ the same cardinality as H.

- Cor. 11.5

If H is a sg of G and there is no other sg of $G \omega /$ the same size as H. then H is normal in G.

- The $11.6 \rightarrow$ denotes the set of right cossets of H in G

Let $H \triangleleft G$. Then, G / H is a group under the bin. op. $H a * H b=H(a b)$

- Def: The group $\underbrace{G / H}$ is called the quotient group of G by H. read " $G \bmod H$ "
- The 11.7

Let G be a finite, abelian group and suppose $p||G|$ and p is prime. Then, G has a sg of order p.

Section 12: Homomorphisms

- Let G and H be groups. $\varphi: G \rightarrow H$ is a homomorphism if $\forall a, b \in G, \varphi(a b)=\varphi(a) \varphi(b)$.
- A home. is an isomorphism if it is $1-1$ and onto
- Fact: $G \cong G$.
- Tho 12.1
(1) Let $\varphi: G \rightarrow H$ and $\Psi: H \rightarrow K$ be homs. Then $\Psi \cdot \varphi: G \rightarrow K$ is a nom.
(2) If φ and ψ are isomorphisms, then so is $\psi \circ \varphi: G \rightarrow K$
(3) If $\varphi: G \rightarrow H$ is an iso., so is $\varphi-1: H \rightarrow G$.
- Cor
\cong is an equiv. relation on the set of all groups.
- The 12.2

Let $n \in \mathbb{Z}^{+}$and let G be a cyclic group of order n. Then, $G \cong\left(\mathbb{Z}_{n}, \oplus\right)$. Consequently, any a cyclic groups of order n are isomorphic.

- The 12.3

Let G be an infinite cyclic group. Then, $G \cong(\mathbb{Z},+)$. Consequently, any 2 infinite cyclic groups are iso.
. The 12.4
Let $\varphi: G \rightarrow H$ be a homomorphism. Then,
(1) $\varphi\left(e_{G}\right)=e_{H}$
(2) $\forall x \in G$ and $n \in \mathbb{Z}, \varphi\left(x^{n}\right)=[\varphi(x)]^{n}$
(3) If $O(x)=n, O(\varphi(x)) \mid O(x)$.

- The 12.5

Let $\varphi: G \rightarrow H$ be an iso. Then,

$$
\text { (4) } \forall x \in G, o(x)=o(\varphi(x))
$$

(5) $|G|=|H|$
(b) G is abelian of H is abelian

- $\operatorname{Thm} 12.6$

Let $P: G \rightarrow H$ be a ham. Then,
(1) If k is a sg of G, then $\varphi(k)=\{\varphi(k) \mid k \in K\}$ is a sg of H.
(2) If J is a sg of H, then $\varphi^{-1}(J)=\{g \in G \mid \varphi(g) \in J\}$ is a sg of G.
(3) If $J \Delta H \Rightarrow \rho^{-1}(J) \Delta G$.
(4) If φ is onto and $k \triangleleft G, \varphi(k) \triangleleft H$.

The 12.7 (Cayley's)
If G is a group, then G is isomorphic to a sg of $S_{G}=\{f: G \rightarrow G \mid f$ is 1-1 and onto $\}$.

- Suppose $\begin{array}{rl}H \triangleleft G . ~ T h e r e ~ i s ~ a l w a y s ~ a ~ h o m . ~ & P: G \rightarrow{ }^{G /} H, ~ g i v e n ~ b y ~ \\ & \longrightarrow \text { "rho" } g)=H g\end{array}$
- like a reduction map $\rightarrow\left[\rho\left(g, g_{2}\right)=H\left(g_{1} g_{2}\right)=H g_{1} H g_{2}=\rho\left(g_{1}\right) \rho\left(g_{2}\right]\right.$
- P is surjective (onto), is a function that gives you cossets
- Def: if $\varphi: G \rightarrow K$ is a ham., then the kernel of φ is $\operatorname{Ker}(\varphi)=\left\{g \in G \mid \varphi(g)=e_{k}\right\}$.
- The 13.1

For any nom $\varphi: G \rightarrow K$, $\operatorname{ker}(\varphi) \triangleleft G$.

- Thy 13.2 (Fundamental Thy on Group Homs)

Let $\varphi: G \rightarrow K$ be a surjective group hom. Then, $K \cong G / \operatorname{ker}(e)$.

- Tho 13.3

Let $e: G \rightarrow k$ be a surj hoo. There is a 1-1 correspondence btw sos of K and sgs of G that contain ker(e).
I.e, there is a bijective map $\Psi:\{$ gs of $K\} \rightarrow\{H \mid H$ is a sg of G, $\operatorname{ker}(e) \leq H\}$.
$\rightarrow \psi(J)=f^{-1}(J)$

- Thy 13.4 (and Mom Thy)

Let H and K be sos of G. Assume $K \triangleleft G$. Then, ${ }^{H / H \cap K} \cong H K / K$, where $H K=\{h K \mid h \in H, K \in K\}$.

- The 13.5 (3 $3^{\text {rd }}$ How Thy)

Suppose $H \triangleleft K \Delta G$ and $H \triangleleft G$. Then, $K / H \triangleleft G / H$ and $(G / H) /(K / H) \cong G / K$.

Section 14: Direct Products + Finite Abelian Groups \rightarrow no HW from this section

- Th rm 14.1

Suppose A, B are sos of G s.t. $A \triangleleft G, B \triangle G$. Also, $G=A B=\{a b \mid a \in A, b \in B\}$. Also, $A \cap B=\{e\}$. Then, $G \cong A \times B$.

- The 14.2 (Fund. Thy on Finite Abelian Groups)

Let G be a nontrivial finite abelian group. Then, $G \cong$ direct product of finitely many nontrivial cyclic groups of prime power order. The prime powers that occur are uniquely determined by G.

- Cor 14.3

Let A, B be finite abelian groups. Then $A \cong B$ iff invariants of $A=$ invariants of B.

- Cor 14.5

Let G be an abelian group of order n and $m \in \mathbb{Z}^{+}$s.t. $m \mid n$. Then, G has a sg of order M. - Section 15: Sylow Thus \rightarrow no HW

- The 15.1

Let G be a finite group. p a prime, $k \in \mathbb{Z}^{+}$
(1) If $p^{k}| | G \mid$, then G has a $s g$ of order p^{k}.

Section 16: Rings

- Def: Suppose R is a set with 2 bin ops, + and .

$$
\begin{aligned}
& \text { Suppose further that } 1)(R,+) \text { is an abelian group } \\
& \qquad \begin{aligned}
& \text { 2) } \cdot \text { is associative } \\
& \text { 3) } \forall r_{1}, r_{2}, r_{3} \in R, r_{1}\left(r_{2}+r_{3}\right)=r_{1} r_{2}+r_{1} r_{3} \text { and } \\
&\left(r_{1}+r_{2}\right) r_{3}=r_{1} r_{3}+r_{2} r_{3}
\end{aligned}
\end{aligned}
$$

Then, $(R,+, \cdot)$ is a ring.

- commutative ring: if - is commutative
- additive identity is denoted O_{R}.
- If \exists a mult. identity, we denote it 1_{R}, which is called the unity of $R . R$ is a ring $w /$ unity.
- Def: Let R be a ring and $a \in R$. We say that a is a zero-divisor if $\exists b \in R$ s.t. $b \neq O_{R}$ and either $a b=O_{R}$ or $b a=O_{R}$. The element a is said to be nilpotent if $\exists n \in \mathbb{Z}^{+}$s.t. $a^{n}=O_{R}$.
- O can be a zero-divisor

Every nilpotent element is a zero-divisor

- Def: Suppose R is a ring $w /$ unity. We scy $a \in R$ is a unit if $\exists b \in R$ s.t. $a b=b a=1_{R}$.

- Thm 16.1

$$
\begin{aligned}
& \text { Let } R \text { be } a \text { ring, } a, b \in R . \text { Then, } \begin{array}{l}
\text { 1) } a \cdot O_{R}=O_{R} \cdot a=O_{R} \\
\text { 2) } a(-b)=(-a)(b)=-(a b) \\
\text { 3) }(-a)(-b)=a b \\
\text { 4) } \forall m \in \mathbb{Z}, m(a b)=(m a) b=a(m b) \\
\text { 5) } \forall n, m \in \mathbb{Z}, m n(a b)=(m a)(n b)
\end{array}
\end{aligned}
$$

- Cor 16.2 : Let R be a nontrivial ring $w /$ unity. Then, $O_{R} \neq 1_{R}$
- Cor 16.3: Let R be a nontrivial ring $\omega /$ unity and $u \in R$ be a unit. Then, u is NOT a zero-divisor

Cor 16.4: If $b, c \in R, b-c=b+(-c) . \forall a \in R, a(b-c)=a b-a c$ and $(b-c) a=b a-c a$. $\&$ distributive laws

- Def: An integral domain is a commutative ring $\omega /$ unity in which $O_{R} \neq 1_{R}$ and there are no nontrivial 0 -divisors

- Thm 16.5

Let R be a ring, and $a, b, c \in R$. Assume $a \neq$ zero-divisor. Then, if $a b=a c, b=c$

- Def: R is called a division ring if R has a unity $I_{R} \neq 0$ and every nonzero element of R is a unit. A commutative division ring is called a field.

Thm 16.7
Every finite integral domain is a field. (See Thm 5.3)

Section 17: Subrings, Ideals (Normal subrings), Quotient Rings

- Def: Let $(R,+, \cdot)$ be a ring. A subset S of R is a subring of R if $(S,+, \cdot)$ is a ring.
- Thm 17.1

Let $(R,+, \cdot)$ be a ring. Let S be a subset of R. Then, S is a subring of R iff

1) $(S,+)$ is a sg of $(R,+)$. \rightarrow nonempty is built in
2) S is closed under mult $\left(\forall S_{1}, S_{2} \in S, S_{1} S_{2} \in S\right)$

- Cor 17.2

Let $(R,+, \cdot)$ be a ring and let S be a nonempty subset of R. Then, S is a subring of R iff

1) $\forall S_{1}, S_{2} \in S, S_{1}-S_{2} \in S$
2) $\forall S_{1}, S_{2} \in S, S_{1} S_{2} \in S$.

- Def: a subring S of R is an ideal of R if $\forall S \in S, r \in R, r s, s r \in S$.
- Thm 17.3

Let $(R,+$,$) be a ring and S$ be an ideal of R. Then, the set ${ }^{R / S}$ of right additive cosets of S in R is a ring under the op $(s+a)(s+b)=s+(a+b)$ and $(s+a)(s+b)=s+a b$.

- Thm 17.4

Let R be a ring and S be a nonempty subset of R. Then, S is an ideal of R, denoted I, iff

1) $\forall S_{1}, S_{2} \in S, S_{1}-S_{2} \in S$
2) $\forall r \in R, s \in S, r s, s r \in S . \rightarrow$ sticky property

- Cor: If F is a field, the only ideals of F are $\{0\}, F$.
- Def: Let R be a ring. Then, R is an improper ideal of R. The trivial ideal is $\left\{O_{R}\right\}$.
- Def: Let R be a ring, I an ideal of R. Then, I is prime if whenever $a, b \in R$ and $a b \in I$, then at least a or $b \in I$. (Prime means $a b \in p \mathbb{Z} \Longleftrightarrow a \in p \mathbb{Z}$ or $b \in p \mathbb{Z}$.)
- Thm 17.5

Let R be a ring and I an ideal. Then. ${ }^{R / I}$ has no nontrivial O-divisors iff I is prime.

- Cor 17.6

Let R be any comm. ring $w /$ unity. Then. ${ }^{R /} I$ is an integral domain iff I is a prime ideal

- Def: An ideal I in a ring R is called maximal if I is a proper ideal and \exists ! other proper ideal J s.t. $I \nsubseteq J$.
- Thm 17.7

Let R be a comm. ring $w /$ unity. If I is an ideal in R, then ${ }^{R / I} I$ is a field iff I is maximal.

- Cor 17.8

Let R be a comm. ring $w /$ unity. Then, every maximal ideal of R is a prime ideal.

Section 18: Ring Homomorphisms

- Def : Let R, S be rings, and $l: R \rightarrow S$ be a function. Then, l is a (ring) home. if

1) $\forall a, b \in R, f(a+b)=f(a)+f(b)$
2) $\forall a, b \in R, f(a b)=f(a) f(b)$

From 1), if $\rho: R \rightarrow S$ is a ring hoo, then $l:(R,+) \rightarrow\left(S_{1}+\right)$ is a group ham. Then, $\rho\left(O_{R}\right)=O_{S}$ and $\forall n \in \mathbb{Z}$ and $a \in R, \rho(n a)=n \rho(a)$.

Thy 18.1
Let $\rho: R \rightarrow S$ be a ring hom. Then, 1) $f\left(O_{R}\right)=O_{S}$
2) $f(n a)=n l(a) \quad \forall n \in \mathbb{Z}, a \in R$
3) $\rho\left(a^{n}\right)=\rho(a)^{n} \quad \forall n \in \mathbb{Z}^{+}, a \in R$
4) If R and S have unity and $\rho\left(1_{R}\right)=1_{s}$, then \forall unit $u \in R, f(u)$ is a unit in s and $f\left(u^{-1}\right)=f(u)^{-1}$

The 18.2
Let R, S be rings $\omega /$ unity and $\rho: R \rightarrow S$ be a ring ham. Then, 1) if ρ is onto, then $\rho\left(1_{R}\right)=1_{s}$.
2) if S is a division ring $+\rho\left(1_{R}\right) \neq O_{S}$, then $f\left(1_{R}\right)=1_{S}$.
3) if S is an integral domain $+e\left(1_{R}\right) \neq O_{S}$, then $f\left(1_{R}\right)$ $=1_{\mathrm{s}}$.

- The 18.3

Let R, S, and T be rings, $\rho: R \rightarrow S$ and $\psi: S \rightarrow T$ be ring homs. Then, 1) $\psi \circ \rho: R \rightarrow T$ is a hoo
2) if l, ψ are isos, then so is $\psi \circ l$
3) if l is an iso, then so is ρ^{-1}

The 18.4
Let $\rho: R \rightarrow T$ be a hoo. Then, 1) if S is a subring of R, then $\rho(s)=\{\rho(s) \mid s \in S\}$ is a subring of T.
2) if U is a subring of T, then $\rho^{-1}(U)=\{r \in R \mid \rho(r) \in U\}$ is a subring of R.
3) if U is an ideal of T, then $\rho^{-1}(U)$ is an ideal of R.
4) if ρ is onto and S is an ideal of R, then $\ell(s)$ is an ideal of T.

- The 18.5

If $\rho: R \rightarrow T$ is an onto ring ham, then ${ }^{R /}$ ker(e) $\cong T$. Moreover, if $P: R \rightarrow{ }^{R /}$ Ker(e), there is an isomorphism $\bar{l}:{ }^{R /} \operatorname{ker}(\rho) \rightarrow T$ st. $\bar{\rho} \circ P=\rho$.

Section 19 : Polynomials

- Notation

1) Variables are X, Y, Z,
2) If R is a ring, then by a poly. $w /$ coeffs from R, we mean an infinite formal symbol $a_{0}+a_{1} X+a_{2} X^{2}+\ldots$, where each $a_{i} \in R$ and \exists some $n \in \mathbb{Z}^{+} \cup\{0\}$ st. $\forall i>n, a_{i}=O_{R}$.
3) The a_{i} 's are the coeffs of the poly.
4) If $a_{n} \neq 0$ and $a_{i}=0 \quad \forall i>n$, then we write our poly. as $a_{0}+a_{1} x+\ldots+a_{n} x^{n}$.
5) 2 poly, $f(x)$ and $g(x)$, are equal if $\forall i, a_{i}=b_{i}$ (a_{i}, b_{i} are coeffs)
6) Poly's w/ coeffs from R ore functions from $R \rightarrow R$. For any $r \in R$, define a function by $f(r)=$ $a_{0}+a_{1} r+a_{2} r^{2}+\ldots+a_{n} r^{n} \in R$.
7) 2 diff poly's can give the same function.

Ex. Let $R=\mathbb{Z}_{3}$ (field). Let $f(x)=0, g(x)=x^{3}-x$. Recall in $\mathbb{Z}_{p}, x^{p}=x$ $\forall r \in R, g(r)=r^{3}+2 r=0$.

Ex. $R[x]=\{$ poly's $\in x$ w/ coeffs $\in R\}$, where $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$, $g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots$
$R[x]$ is a ring under coeff addition, mult, where $c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+a_{2} b_{n-2}+$ $+a_{n-1} b_{1}+a_{n} b_{0}=\sum_{i=0}^{n} a_{i} b_{n-i}$

What can we say abt $R[x]$, given info abt R ?

- If R has a unity, then so does $R[X]: 1_{R[x]}=1_{R}+O X+O X^{2}+$
- If R is a domain, so is $R[x]$.
\rightarrow comm. ring w/ unity, no nontrivial O-divisors

Proof: Let $f(x), g(x) \in R[x]$. Suppose $a_{n}, b_{m} \neq 0$. Then,
$(f g)(x)=c_{0}+c_{1} x+\ldots+c_{m+n} x^{m+n}, c_{m+n} \neq 0$. So, $(f g)(x) \neq O_{R[x]}$.

- Def: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}, w / a_{n} \neq 0$. The int n is the degree of f and denoted deg (f) $=n$ $=\operatorname{deg}(f(x))$.

Note: $\operatorname{deg}\left(O_{R[X]}\right)=\operatorname{DNE}$

- Thy 19.1

If R is a domain and $f(x), g(x) \in R[x]$ and $f(x) \neq 0, g(x) \neq 0$, then $\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x))$.

Thy 19.2

Let F be a field and $f(x), g(x) \in F[x]$. If $g(x) \neq 0$, then $\exists q(x), r(x) \in F[x]$ st. $f(x)=q(x) g(x)+r(x)$ and either $r(X)=0$ or $\operatorname{deg}(r(X))<\operatorname{deg}(g(x))$.

Note: the units in $F[x]$ are the $\operatorname{deg} 0$ poly.

- Def: Let R be a ring and $f(x) \in R[x]$. An element $r \in R$ is called a root/ zero of $f(x)$ if $f(r)=0$.

Thy 19.3
Let F be a field, $a \in F, f(x) \in F[x]$. Then $f(a)=0$ iff $x-a \mid f(x)$.

Cor 19.4
Let F be a field, $f(x) \in F[x] \omega / \operatorname{deg}(f)=n$. Then, $f(x)$ has at most a roots.

Cor 19.5
Let F be an infinite field, S an infinite subset of F. If $f(x) \in F[x]$ s.t. $\forall s \in S, f(s)=0$, then $f(x)=0$.

Cor 19.6

Let F be an infinite field and $s \leq F$ st. $|s|=\infty$. Suppose $f(x), g(x) \in F[x]$ st. $\forall s \in S, f(s)=g(s)$. Then, $f(x)=g(x) \quad$ [as polynomials].

- Def: Let F be a field, $f(x) \in F[x]$ s.t. $f(x)$ is a nonconstant poly. The poly. f is irreducible (over F) if f cannot be written as the product of 2 nonconstant poly. I.e, f is irr. if whenever $f(x)=g(x) h(x)$, either $\operatorname{deg}(g)=0$ or $\operatorname{deg}(h)=0$.

Ex. In $\mathbb{R}[x], x^{2}+1$ is irr. (no roots \rightarrow cannot factor \rightarrow ier). It is a unit!

Ex. in $\mathbb{C}[x], x^{2}+1$ is NOT ir.

Ex. In $\mathbb{Z}_{5}[x], x^{2}+1$ is NOT irr, be $f(2)=z^{2}+1=\overline{5}=0$. we have our root.
$\longrightarrow x^{2}+1=(x-2)(x-3)$

- The 19.7

Let F be a field and $f(x) \in F[x]$ s.t. $f(x)$ is nonconstant. Then, \exists irr. poly's $f_{1}(x), f_{2}(x), \ldots, f_{k}(x) \in F[x]$ s.t. $f(x)=f_{1}(x) f_{2}(x) \cdots f_{k}(x)$

The $19.8 \&$

Let F be a field and $f(x) \in F[x]$ s.t. $\operatorname{deg}(f)=2$ or 3 . Then. f is reducible iff $f(x)$ has a root in F.

- The 19.11

Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in \mathbb{Z}[x]$. Suppose p is a prime in \mathbb{Z} s.t. $p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n-1}, p+a_{n}$ and $p^{2}+a_{0}$. Then, $f(x)$ is irr in $\theta[x]$. It is Eisenstein at p.

- Ex: $f(x)=2 x^{5}+9 x^{4}+3 x^{3}+15 x+12 \in \mathbb{Z}[x] . f(x)$ is Eisenstein at $p=3$. So, $f(x)$ is ir over θ.
- Ex: $x^{2}-2$ is Eisenstein at $p=2$. So $x^{2}-2$ is ir r in $\theta[x]$.

Ex: $f(x)=x^{4}+1$.

$$
n^{\theta[x]} n
$$

Suppose $f(x)$ is irr. Then $f(x)=g_{1}(x) g_{2}(x)$ w/ $\operatorname{deg}\left(g_{1}\right), \operatorname{deg}\left(g_{2}\right)>0$. Then, $f(x)+1=g_{1}(x+1) g_{2}(x+1)$ $f(x+1)=(x+1)^{4}+1$
$=x^{4}+4 x^{3}+6 x^{2}+4 x+2$ is Eisenstein at 2 and ir in $\theta[x]$. So, $f(x)$ must also be ir.

- Thy 19.12 Prof's favorite, might appear on exam

Let p be a prime. For $m \in \mathbb{Z}$, let \bar{m} be the remainder of dividing m by p (i.e. $m \bmod p$).
Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \in \mathbb{Z}[x]$ be a nonconstant poly. Let $\bar{f}(x)=\bar{a}_{0}+\bar{a}_{1} x+\ldots+\bar{a}_{n} x^{n}$ $\in \mathbb{Z}_{p}[x]$.

Then, if $\bar{f}(x)$ is irreducible in $\mathbb{Z}_{p}[x]$ and $\operatorname{deg}(f)=\operatorname{deg}(\bar{f})$, then $f(x)$ is irr. in $\theta[x]$.
\rightarrow stronger than being or in $\mathbb{C}[x]$

$$
\text { I.e, } f(x)=g_{1}(x) g_{2}(x) \Longleftrightarrow \bar{f}(x)=\bar{g}_{1}(x) \bar{g}_{2}(x) \text {. }
$$

Section 20: From Poly's to Fields

- The 20.1

If F is a field, every ideal of $F[x]$ is $\underbrace{\text { principal. }}_{L}$ R a comm. ring $w / 1$. Let $a \in R$. Then, $a R=\{a r \mid r \in R\}$

- Tho 20.2

Let F be a field, $f(x) \in F[x]$. Then, $(f(x))$ is maximal iff $f(x)$ is irreducible.

